


Probability and Nonlinear Systems 

the 1930s and first published in this coun- 
try in 1957. See "Excerpts from The Scot- 
tish Book.") 

Ulam's incredible feel for mathematics 
was due to a rare combination of intu- 
itions, a common feature of almost all 
great mathematicians. He had a very 
good sense of combinatorics and orders 
of magnitude, which included the ability 
to make quick, crude, but in-the-ballpark 
estimates. Those talents, combined with 
the more ordinary abilities to analyze a 
problem by means of logic, geometry, or 
probability theory, already made him very 
unusual. Besides, he had a good intuition 
for physical phenomena, which motivated 
many of his ideas. 

Ulam's intuition, as exhibited in nu- 
merous problems formulated over a span 
of more than fifty years, covered an enor- 
mous range of subjects. The problems on 
computing, physical systems, evolution, 
and biology were stimulated by new de- 
velopments in those fields. Many others 
seemed to spring from his head. He usu- 
ally had some prime examples in mind 
that motivated his choice of mathemati- 
cal model or method. In this regard one 
of his favorite quotes, from Shakespeare's 
Henry VIII, was 

Things done without example 
in their issue 

Are to be feared. 

In approaching a complicated problem 
Stan first searched for simplicity. He 
had no patience for complicated theories 
about simple objects, much less complex 
objects. That philosophical dictum hap- 
pened to match his personality. He could 
not hold still for the time it would take 
to learn, let's say, modern abstract alge- 
braic geometry, nor could he put up with 
the generalities of category theory. Also, 
he was familiar with, and early in his ca- 
reer obtained fundamental results in, mea- 
sure and probability theories. That back- 
ground led him to approach many prob- 
lems by placing them in a probabilistic 

framework. Instead of considering just 
one possible outcome of a process, one 
can consider an infinite number of possi- 
ble outcomes at once by randomizing the 
process. Then one can apply the power- 
ful tools of probability, such as the laws 
of large numbers, to determine the like- 
lihood of a given outcome. The famous 
Monte Carlo method is a perfect exam- 
ple of that approach. In fact, one of 
the favorite sayings of Erdos and Ulam, 
both of whom worked in combinatorics 
(in which the number of outcomes is fi- 
nite) and probability, was 

The infinite we do right away; 
the finite takes a little longer. 

Stan's interest in probability dates back 
to the early 1930s, when he and Lomnicki 
proved several theorems concerning its 
foundations. In particular, they showed 
how to construct consistent probability 
measures for systems involving infinite 
(as opposed to finite) sequences of inde- 
pendent random variables and, more gen- 
erally, for Markov processes. (In Markov 
processes probabilities governing the fu- 
ture depend only on the present and are 
independent of the past.) At about the 
same time Kolmogorov, independently, 
proved his consistency theorem, which 
includes the Ulam and Lomnicki results 
as well as many more. Those results 
guarantee the existence of a probability 
measure on classes of objects generated 
by various random processes. The objects 
might be infinite sequences of numbers 
or more general geometrical or topologi- 
cal objects, such as the homeomorphisms 
(one-to-one, onto maps) discussed in de- 
tail later in this article. Stan's interest in 
probability continued after World War 11, 
when he and Everett wrote fundamental 
papers on "multiplicative" processes (bet- 
ter known as branching processes). Those 
papers were stimulated by the need to 
calculate neutron multiplication in fission 
and fusion devices. (David Hawkins, in 
'The Spirit of Play," discusses some of 

the earliest work that Stan and he did on 
branching processes.) 

Stan's background in probability made 
him a leader among the outstanding group 
of intellects who, during the late 1940s 
and early 1950s, recognized the potential 
value of the computer for doing experi- 
mental mathematics. They realized that 
the computer was an ideal tool for an- 
alyzing stochastic, or random, processes. 
While formal theorems gave rules on how 
to determine a probability measure on a 
space of objects, the computer opened up 
the possibility of generating those objects 
at random. Simply stated constructions 
that yield complicated objects could be 
implemented on the computer, and if one 
was lucky, demonstrable guesses could 
be made about their asymptotic, or long- 
term, behavior. That was the approach 
Stan took in studying deterministic as 
well as random recursions. In addition 
he invented cellular automata (lattices of 
cells and rules for evolution at each cell) 
and used them to simulate growth patterns 
on the computer. 

The experimental approach to mathe- 
matics has since become very popular and 
has tremendously enhanced our vision of 
complex physical, chemical, and biologi- 
cal systems. Without the fortuitous con- 
junction of the computer and probabil- 
ity theory, it is very unlikely that we 
would have reached today's understand- 
ing of those nonlinear systems. Such sys- 
tems present a challenge analogous to that 
Newton would have faced if the earth 
were part of a close binary or tertiary 
star system. (One can speculate whether 
Newton could have ever unraveled the 
law of gravitation from the complicated 
motions of such a system.) At present 
researchers are trying to formulate limit- 
ing laws governing the long-term dynam- 
ics of nonlinear systems that are analo- 
gous to the major limiting theorems in 
classical probability theory. The attempt 
to construct appropriate probability mea- 
sures for such systems is one of the topics 
I will discuss in more depth. 
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Other interests that Ulam maintained 
throughout his life were logic and set the- 
ory. I remember a conference' on large 
cardinal numbers in New York a few 
years ago. Stan was the honored partic- 
ipant. More than fifty years earlier he 
had shown that if a nontrivial probability 
measure can be defined on all subsets of 
the real numbers, then the cardinal num- 
ber, or "size," of the set of all the subsets 
exceeded the wildest dreams of the time. 
(See "Learning from Ulam: Measurable 
Cardinals, Ergodicity, and Biomathemat- 
ics.") But that large cardinal of his is 
minuscule compared with the cardinals of 
today. After listening to some of the con- 
ference talks, Stan said that he felt like 
Woody Allen in Sleeper when he woke up 
after a nap of many years and was con- 
fronted with an unbelievably large num- 
ber on a McDonald's hamburger sign. 

There is a serious aspect to that re- 
mark. Stan felt that a split between math- 
ematics and physics had developed during 
this century. One factor was the trauma 
that shook the foundations of mathemat- 
ics when Cantor's set theory was found 
to lead to paradoxes. That caused mathe- 
matics to enter a very introspective phase, 
which continues to this day. A tremen- 
dous effort was devoted to axiomatiz- 
ing mathematics and raising the level of 
rigor. Physics, on the other hand, expe- 
rienced an outward expansion and devel- 
opment. (The situation is somewhat re- 
versed today, as internal issues concern- 
ing the foundations of physics receive at- 
tention.) As a result, university instruc- 
tion of mathematicians has become so rig- 
orous and demanding that the mathemat- 
ical training of scientists has been taken 
over by other departments. Consequently, 
instruction in "applied" mathematics, or 
mathematical methods, is often at a fairly 
low level of rigor, and, even worse, some 
of the important mathematical techniques 
developed during this century have not 
made their way into the bag of tools of 
many physical scientists. Stan was very 
interested in remedying the situation and 

believed the Center for Nonlinear Studies 
at Los Alamos could play a significant 
role. 

Stan was associated, either directly or 
through inspiration, with the three re- 
search problems described in Part I11 of 
this article. Each is an example of how a 
probabilistic approach and computer sim- 
ulation can be combined to illuminate fea- 
tures of nonlinear systems. Since some 
background in modem probability theory 
is needed to follow the solutions to the 
problems, Part I1 provides a tutorial on 
that subject, which starts with a bit of his- 
tory and concludes with several profound 
and useful theorems. Fortunately Mark 
Kac and Stan Ulam gave a very insightful 
summary of the development of probabil- 
ity theory in their book Mathematics and 
Logic: Retrospect and Prospects. I have 
adapted and extended their discussion to 
meet the needs of this presentation but 
have retained their broad perspective on 
the history .of mathematics and, in some 
cases, their actual words. 

ts from the 

&ion of Ulam's own translation into En- 

and the work stimulated by Problem 43 
has played a major role in understanding 
the consequences of the 
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Part II 
PROBABILITY and NONLINEAR SYSTEMS 

*The material quoted in this tutorial from Mathe- 
matics and Logic has been reprinted with permis- 
sion from Encyclopedia Britannica, Inc. 

A TUTORIAL 
on PROBABILITY. 

MEASURE, and the laws of 
LARGE NUMBERS 

A 
s mentioned 
foundations 
outcomes is 

in the introduction, Stan Ulam contributed to the measure-theoretic 
that allow one to define a probability when the number of possible 
infinite rather than finite. Here I will explain why this extension 

is so necessary and so powerful and then use it to introduce the laws of large numbers. 
Those laws are used routinely in probability and its applications (several times, for 
example, during solution of the problems discussed in Part 111). Following the logic of 
Kac and Ulam I begin at the beginning.* 

Early Probability Theory 

Probability theory has its logical and historical origins in simple problems of 
counting. Consider games of chance, such as tossing a coin, rolling a die, or drawing 
a card from a well-shuffled deck. No specific outcome is predictable with certainty, 
but all possible outcomes can usually be listed or described. In many instances the 
number of possible outcomes is finite (though perhaps exceedingly large). Suppose we 
are interested in some subset of the outcomes (say, drawing an ace from a deck of 
cards) and wish to assign a number to the likelihood that a given outcome belongs to 
that subset. Our intuitive notion of probability suggests that that number should equal 
the ratio of the number of outcomes yielding the event (4, in the case of drawing an 
ace) to the number of all possible events (52, for a full deck of cards). 

This is exactly the notion that Laplace used to formalize the definition of probability 
in the early nineteenth century. Let A be a subset of the set 0 of all possible outcomes, 
and let P(A) be the probability that a given outcome is in A. For situations such that 
0 is a /rote set and all outcomes in 0 are equally probable, Laplace defined P(A) as 
the ratio of the number v(A) of elements in A to the total number v(f2) of elements of 
0; that is, 

However, the second condition makes the definition circular, for the concept of proba- 
bility then is dependent upon the concept of equiprobability. As will be described later, 
the more modem definition of probability does not have this difficulty. 

For now let us illustrate how Laplace's definition reduces the calculation of 
probabilities to counting. Suppose we toss a fair coin (one for which heads and tails 
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are equally probable) n times and want to know the probability that we will obtain 
exactly m heads, where 1 < m < n. Each outcome of n tosses c-an be represented 
as a sequence, of length n, of H 's and T's (HTHH . . . THH, for example), where H 
stands for heads and T for tails. The set 0 of all possible outcomes of n tosses is 
then the set of all possible sequences of length n containing only H ' s  and T's. The 
total number of such sequences, v(fl),  is 2". How many of these contain H exactly 
m times? This is a relatively simple problem in counting. The first H can occur in n 
positions, the second in n - 1 positions, . . . , and the mth in (n - m + 1) positions. So 
if the H 's were an ordered sample (HI,  Hz,.  . . , Hm), the number of sequences with m 
H 's would equal n(n - 1)(n - 2). . . (n - m + 1). But since all the H 's are the same, 
we have overcounted by a factor of m! (the number of ways of ordering the H 's). So 
the number of sequences of length n containing m H 's is 

n(n - 1) ...( n -in+ 1) - n ! 
- 

m! m!(n - m)! 

(The number n!/m !(n - m)!, often written (3, is the familiar binomial coefficient, 
that is, the coefficient of x m y n m  in the expansion of (x + y)"). Since the number of 
sequences with exactly m H ' s  is (3 and the total number of sequences is 2", we have 
by Laplace's definition that the probability P(m, n)  of obtaining m heads in n tosses 
of a fair coin is 

Consider now a coin that is "loaded" so that the probability of a head in a single 
toss is 116 (and the probability of a tail in a single toss is 516). Suppose again we toss 
this coin n times and ask for the probability of obtaining exactly m heads. To describe 
the equiprobable outcomes in this case, one can resort to the artifice of thinking of the 
coin as a six-faced die with an H on one face and T's on all the others. Using this 
artifice to do the counting, one finds that the probability of m heads in n tosses of the 
loaded coin is 

n ! 
P ( m ,  n) = 

m\{n - m)! ( A ) "  (i)n-m. 
Suppose further that the coin is loaded to make the probability of H irrational 

( \ /2 /2 ,  for example). In such a case one is forced into considering a many-faced die 
and passing to an appropriate limit as the number of faces becomes infinitely large. 
Despite this awkwardness the general result is quite simple: If the probability of a 
head in one toss is p ,  0 < p  < 1, and the probability of a tail is 1 - p  = q ,  then the 
probability of m heads in n tosses is 

n ! 
m!(n - m)! 

Building on earlier work of deMoivre, Laplace went further to consider what 
happens as the number of tosses gets larger and larger. Their result, that the number 
of heads tossed obeys the so-called standard normal distribution of probabilities, was a 
major triumph of early probability theory. (The standard normal distribution function, 
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STANDARD NORMAL 
DISTRIBUTION FUNCTION 

(b) STANDARD NORMAL DENSITY 
FUNCTION 

Fig. 1. Almost two centuries ago Laplace 
showed that the number Nu of heads ob- 
tained in a large number n of tosses of a 
coin (fair or loaded) follows the standard 
normal distribution of probabilities. More 
precisely, he showed that the probability 
of Nu being equal to or less than np + 
t \/np(1 (where p is the probability of 
a head in a single toss and t is some num- 
ber) can be approximated, for large n, by the 
standard normal distribution function F ( t )  
shown in (a). The derivative of a distribu- 
tion function (when it exists) is called a fre- 
quency, or density, function. Shown in (b) 
is the density function f(t) for the standard 
normal distribution function. Note that the 
value of the distribution fuction at some par- 
ticular value of t, say 0, is equal to the area 
under the density function from -00 to 3. 
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BERTRAND'S PARADOX 

What is the probability P that a 
randomly chosen chord of a circle is 
longer than the side of the 
equilateral triangle inscribed within 
the circle? 

This question cannot be answered by us- 
ing Laplace's definition of probability, since 
the set of all possible chords is infinite, as 
is the set of desired chords (those longer 
than the side of the inscribed equilateral tri- 
angle). However, the question might be ap- 
proached in the two ways depicted here and 
described in the text. Although both ap- 
proaches seem reasonable, each leads to a 
different answer! 

Fig. 2. 

call it F(t), is given by 

F (t) = - /' -x2 /2&.  

-m 
9 

the function dF /dt = ( l / v ^ )  e-t2/2 is called the standard normal density function.) 
The deMoivre-Laplace result can be stated as follows. As n gets larger and 

larger, the probability that NH , the number of heads tossed, will be less than or equal to 
np +t^/pqn (where t is some number) is approximated better and better by the standard 
normal distribution function. Symbolically, 

lim P(Nn < izp + t J n p q )  = - e-x2 /2&. 
n+cn 

In other words, P(NH < np + tJnpq)  is approximated by the area under the standard 
normal density function from -00 to t, as shown in Fig. 1. (In modem terminology NH 
is called a random variable; this term and the terms distribution function and density 
function will be defined in general later.) 

The de Moivre-Laplace theorem was originally thought to be just a special property 
of binomial coefficients. However, many chance phenomena were found empirically 
to follow the normal distribution function, and it thus assumed an aura of universality, 
at least in the realm of independent trials and events. The extent to which the normal 
distribution is universal was determined during the 1920s and 1930s by Lindeberg, 
Feller, and others after the measure-theoretic foundations of probability had been 
laid. Today the de Moivre-Laplace theorem (which applies to independent trials, each 
governed by the same probabilities) and its extension to Poisson schemes (in which 
each independent trial is governed by different probabilities) are regarded simply as 
special cases of the very general central limit theorem. Nevertheless they were the 
seeds from which most of modem probability theory grew. 

Bertrand's Paradox 

The awkwardness and logical inadequacy of Laplace's definition of probability 
made mathematicians suspicious of the whole subject. To make matters worse, attempts 
to extend Laplace's definition to situations in which the number of possible outcomes is 
infinite resulted in seemingly even greater difficulties. That was dramatized by Bertrand, 
who considered the problem of finding the probability that a chord of a circle chosen 
"at random" be longer than the side of an equilateral triangle inscribed in the circle. 

If we fix one end of the chord at a vertex of the equilateral triangle (Fig. 2a), we 
can think of the circumference of the circle as being the set Fl of all possible outcomes 
and the arc between the other two vertices as the set A of "favorable outcomes" (that 
is, those resulting in chords longer than the side of the triangle). It thus seems proper 
to take 113, the ratio of the length of the arc to the length of the circumference, as the 
desired probability. 

On the other hand we can think of the chord as determined by its midpoint and 
thus consider the interior of the circle as being the set 0 of all possible outcomes. The 
set A of favorable outcomes is now the shaded circle in Fig. 2b, whose radius is one- 
half that of the original. It now seems equally proper to take 114 for our probability, 
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the ratio of the area of the smaller circle to that of the original circle. AXIOM OF ADDITIVITY 
That two seemingly appropriate ways of solving the problem led to different 

answers was so striking that the example became known as "Bertrand's paradox." n 
It is not, of course, a logical paradox but simply a warning against uncritical use of 
the expression "at random." One must specify exactly how something is to be done at 
random. 

Coming as it did on top of other ambiguities and uncertainties, Bertrand's paradox 
Sample 

greatly strengthened the negative attitude toward anything having to do with chance 
and probability. As a result, probability theory all but disappeared as a mathematical 

Disjoint Events 
discipline until its spectacular successes in physics (in statistical mechanics, for ex- a,,d p2 
ample) revived interest in it early in the twentieth century. In retrospect, the logical 
difficulties of Laplace's theory proved to be minor, but clarification of the foundations probability of (E,  or ,I==) = 

of probability theory had a distinctly beneficial effect on the subject. Probability of El + Probability of E2 

Axioms of Modern Probability Theory 

The contemporary approach to probability is quite simple. From the set f2 of all 
AXIOM OF COMPLEMENTARITY 

- - -  

possible outcomes (called the sample space), a collection of subsets (called elementary 
events) is chosen whose probabilities are assumed to be given once and for all. One 
then tries to calculate the probabilities of more complicated events by the use of two 
axioms. 

Axiom of additivity: If El and Â£ are events, then "El or Â£2' is an event. Moreover, 
if El and E2 are disjoint events, (that is, the subsets corresponding to El and Ei have 
no elements in common), then the probability of the event "E1 or E2" is the sum of 
the probabilities of El and E2, provided, of course, that El and Â£ can be assigned 
probabilities. Symbolically, 

P(El U E2) = P(Ei) + P(E2) provided El  n E2 = 0. 

Sample Space 

Probability of (not E) = Probability of (0 - E )  = 

1 - Probability of E 

Axiom of complementarity: If an event E can be assigned a probability, then the 
event "not E" also can be assigned a probability. Moreover, since the whole sample 
space fl, is assigned a probability of 1, 

P(not E) = P(^t - E)  = 1 - P(E). 

Why these axioms? What is usually required of axioms is that they should 



Probability and Nonlinear Systems 

through approximating forms. Finally, at the heart of the subject is the selection 
of elementary events and the decision on what probabilities to assign them. Here 
nonmathematical considerations come into play, and we must rely upon the empirical 
world to guide us toward promising areas of exploration. These considerations also 
lead to a central idea in modem probability theory-independence. 

The Definition of Independence 

Let us return to the experiment of tossing a coin n times. In attempting to construct 
any realistic and useful theory of coin tossing, we must first consider two entirely 
different questions: (1) What kind of coin is being tossed? (2) What is the tossing 
mechanism? The simplest assumptions are that the coin is fair and the tosses are 
"independent." Since the notion of independence is central to probability theory, we 
must discuss it in some detail. 

Events E and F are independent in the ordinary sense of the word if the occurrence 
of one has no influence on the occurrence of the other. Technically, the two events 
(or, for that matter, any finite number of events) are said to be independent if the rule 
of multiplication of probabilities is applicable; that is, if the probability of the joint 
occurrence of E and F is equal to the product of their individual probabilities, 

Kac and Ulam justified this definition of independence as follows: 

"In other words, whenever E and F are independent, there should be a rule 
that would make it possible to calculate Prob. {E and F} provided only that one 
knows Prob. {E} and Prob. { F } .  Moreover, this rule should be universal; it should 
be applicable to every pair of independent events. 

Such a rule takes on the form of a function f (x,y)  of two variables x ,  y, and 
we can summarize by saying that whenever E and F are independent we have 

Prob. {E and F } = f (Prob. {E }, Prob. {F }) 
Let us now consider the following experiment. Imagine a coin that can be 

'loaded' in any way we wish (i.e., we can make the probability p of H any number 
between 0 and 1) and a four-faced die that can be 'loaded' to suit our purposes also. 
The faces of the die will be marked 1,2,3,4 and their respective probabilities will be 
denoted p ,  , p2, p3, p4; each pi is nonnegative and p l  + p2 + p3 + p4 = 1. We must now 
assume that whatever independence means, it should be possible to toss the coin and 
the die independently. If this is done and we consider (e.g.) the event 'H and (1 or 
2)' then on the one hand 

Prob. {Hand (1 or 2)} = f @ , p i  + p 2 )  
while on the other hand, since the event 'H and (1 or 2)' is equivalent to the event 
( H  and 1) or (H and 2),' we also have 

Prob. {H and(1 or 2)} = Prob. {H andl} + Prob. {H and 2} = f @ , p i )  + f (p,pz) 

Note that we have used the axiom of additivity repeatedly. Thus 

f @ , ~ \  + ~ 2 )  =f(P,p1)+f(P,p2) 
for all p , pl , p2 restricted only by the inequalities 
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0 5 / 7 5  11 O < P l ,  0<p21 P l + P 2 <  1 
If one assumes, as seems proper, that f depends continuously on its variables, it 

follows that f (x, y)  = xy and hence the probability of a joint occurrence of indepen- 
dent events should be the product of the individual probabilities. 

This discussion (which we owe to H. Steinhaus) is an excellent illustration of 
the kind of informal (one might say 'behind the scenes') argument that precedes a 
formal definition. The argument is of the sort that says in effect: 'We do not really 
know what independence is, but whatever it is, if it is to make sense, it must have 
the following properties . . .' Having drawn from these properties appropriate conse- 
quences (e.g., that f ( x , y )  = xy in the above discussion), a mathematician is ready to 
tighten things logically and to propose a formal definition." 

Having now defined independence as the applicability of the rule of multiplication 
of probabilities, let us again derive the probability of obtaining m heads in n tosses of 
a coin loaded so that p is the probability of a head in a single toss and q = 1 - p is 
the probability of a tail. If the tosses are assumed to be independent, the probability of 
obtaining a specified sequence of m heads (and (n - m) tails) is p m q n m  (by the rule 
of multiplication of probabilities). Since there are (i) such sequences, the probability 
of the event that exactly m out of n independent tosses will be heads is 

(Here we have applied the axiom of additivity). We have arrived at this formula, first 
developed almost two centuries ago, by using the modem concept of independence 
rather than Laplace's concept of equiprobability. 

Probability and Measure Theory 

As soon as we consider problems involving an infinite (rather than a finite) number 
of outcomes, we can no longer rely on counting to determine probabilities. We need 
instead the concept of measure. Indeed, probabilities are measures; that is, they are 
numerical values assigned to sets in some collection of sets, namely to sets in the sample 
space of all possible outcomes. The realization, during the early part of this century, 
that probability theory could be cast in the mold of measure theory made probability 
theory respectable by supplying a rigorous framework. It also extended the scope of 
probability theory to new, more complex problems. 

Before presenting the general properties of a measure, let us consider two problems 
involving an infinite number of outcomes. One is the problem that led to Bertrand's 
paradox, namely, find the probability that a chord of a circle chosen at random is 
longer than the side of an inscribed equilateral triangle. For that problem the event 
A, or subset A, of chords that are longer and the sample space 0 of all chords could 
be depicted geometrically. Thus the relative sizes (measures) of the two sets could be 
compared even though each was an uncountable set. (The measures of those sets were 
either lengths or areas.) Another situation in which an infinity of outcomes needs to 
be considered is the following. Suppose two persons A and B are alternately tossing 
a coin and that A gets the first toss. What is the probability that A will be the first 
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What is the 
first to toss 

probability that A will be the to toss a head? This can happen either on the first toss, or on the third (the first two 

a head? being tails), or on the fifth (the first four being tails), and so on. The event that A will 
toss the first head is thus decomposed into an infinite number of disjoint events. If the 
coin is fair and the tosses independent (so that the rule of multiplication applies), then 
the probabilities of these events are 

1 1 1  
- 
2'  23' $ 1  

and the probability that A will toss the first head is simply the sum of a geometric 
series: 

This result hinges on one very crucial proviso: that we can extend the axiom of 
additivity to an infinite number of disjoint events. This proviso is the third axiom of 
modem probability theory. 

Axiom of countable additivity: If E l ,  E2,  E3,  . . . is an infinite sequence of disjoint 
events, then U r  Ei is an event and 

Note that in solving the last problem we not only needed the axiom of countable 
additivity but also assumed that the probabilities used for finite sequences of trials 
are well defined on events in the space of infinite sequences of trials. Whether such 
probabilities could be defined that satisfy the axioms of additivity, complementarity, 
and countable additivity was one of the central problems of early twentieth-century 
mathematics. That problem is really the problem of defining a measure because, as 
we will see below, the axioms of probability are essentially identical with the required 
properties of a measure. 

Measure Theory. The most familiar examples of measures are areas in a plane or 
volumes in three-dimensional Euclidean space. These measures were first developed 
by the Greeks and greatly extended by the calculus of Newton and Leibnitz. As 
mathematics continued to develop, a need arose to assign measures to sets less "tame" 
than smooth curves, areas, and volumes. Studies of convergence and divergence of 
Fourier series focused attention on the "sizes" of various sets. For example, given 
a trigonometric series a,, cos n t + b,, sin n t, can one assign a measure to the set of 
t ' s  for which the series converges? (Cantor's set theory, which ultimately became the 
cornerstone of all of modem mathematics, originated in his interest in trigonometric 
series and their sets of convergence.) For another example, how does one assign a 
measure to an uncountable set, such as Cantor's middle-third set? (See "Cantor's 
Middle-Third Set".) Answers to such questions led to the development of measure 
theory. 

The concept of measure can be formulated quite simply. One wants to be able to 
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assign to a set A a nonnegative number p(A), which will be called the measure of A, 
with the following properties. 

Property 1: If Al,A2,. . . are disjoint sets that are measurable, that is, if each Ai can 
be assigned a measure /^(A,), then their union A l  U A2 U . . . (that is, the set consisting 
of the elements of A,, A2, . . .) is also measurable. Moreover, 

/^(Ai UA2U ... ) = / < A i ) + p O + * -  

Property 2: If A and B are measurable and A is contained in B (A c B), then B - A 
(the set composed of elements that are in B but not in A) is also measurable. By 
property 1 then, p.(B - A) = p(B) - /^(A). 

Two additional properties are assumed for measures on sets in a Euclidean space. 

Property 3: A certain set E, the unit set, is assumed to have measure 1: p(E) = 1. 

Property 4: If two measurable sets are congruent (that is, a rigid motion maps one 
onto the other), their measures are equal. 

When dealing with sets of points on a line, in a plane, or in space, one chooses E to be 
an interval, a square, and a cube, respectively. These choices are dictated by a desire to 
have the measures assigned to tame sets agree with those assigned to them previously 
in geometry or calculus. 

Can one significantly enlarge the class of sets to which measures can be assigned 
in accordance with the above properties? The answer is a resounding yes, provided 
(and it is a crucial proviso) that in property 1 we allow infinitely many A's. When we 
do, the class of measurable sets includes all (well, almost all-perhaps there may be 
some exceptions . . .) the sets considered in both classical and modem mathematics. 

Although the concept of countable additivity had been used previously by Poincare, 
the explicit introduction and development of countably additive measures early in this 
century by  mile Bore1 and Henri Lebesgue originated a most vigorous and fruitful 
line of inquiry in mathematics. The Lebesgue measure is defined on sets that are 
closed under countably infinite unions, intersections, and complementations. (Such a 
collection of sets is called a cr-field.) Lebesgue's measure satisfies all four properties 
listed above. Lebesgue's measure on the real line is equivalent to our ordinary notion 
of length. 

But how general is the Lebesgue measure? Can one assign it to every set on the 
line? Vitali first showed that even the Lebesgue measure has its limitations, that there are 
sets on the line for which it cannot be defined. The construction of such nonmeasurable 
sets involves the use of the celebrated axiom of choice. Given a collection of disjoint 
sets, one can choose a single element from each and combine the selected elements 
to form a new set. This innocent-sounding axiom has many consequences that may 
seem strange or paradoxical. Indeed, in the landmark paper on measurable cardinals 
mentioned at the beginning of this article, Ulam showed (with the aid of the axiom of 
choice) that if a nontrivial measure satisfying properties 1 through 3 can be defined on 
all subsets of the real line, then the cardinality of the real numbers is larger than anyone 
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CANTOR'S D uring the last quarter of the nineteenth century, Georg Cantor introduced a 
series of concepts that now form the cornerstone of all modem mathematics- 
set theory. Those concepts arose from Cantor's attempt to depict the sets 

MIDDLE- of convergence or divergence of, say, trigonometric series. Many such sets have 
pathological properties that are illustrated by his famous construction, the "middle- 
third" set. This set is described by the following recursion. Consider the closed unit THIRD SET interval [o, 11. First remove the middle-third open interval, obtaining two intervals 
[O, 1/31 and [2/3, 11. Next remove from each of these intervals its middle-third 
interval. We now have four closed subintervals each of length 119. Continue the 
process. After n steps we will have 2" closed subintervals of [0,1] each of length 

I 

I 1/3". From each of these we will remove the middle-third interval of length 1/3n+1. 
Continue the process indefinitely. Cantor's middle-third set, K, consists of all numbers 
in [0,1] that are never removed. ~ This set possesses a myriad of wonderful properties. For example, K is uncount- 
able and yet has Lebesgue measure zero. To see that K has measure zero, consider 

I the set {[O, 11 - K}, which consists of the open intervals that were removed at some 
I stage. At the nth stage 2 " '  open intervals of length 113" were removed from the 

remainder. So, by the countable additivity of measure, 

+ ' * + 2"-'/3* + .. . = (1/3)(1+ 2/23 + (2/3)2 + . . .) = 1. 

omplementarityÃ &(K) = 0, which is what we wanted to 
I 

~ on Cantons middle-third set is discussed 

I 
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imagined. (See "Learning from Ulam: Measurable Cardinals, Ergodicity, and Biomath- BANACH-TARSKI PARADOX 
ematics.") Another example is the Banach-Tarski paradox. 

Banach and Tarski proved that each of two solid spheres Sl and Sz of different 
radii can be decomposed into the same finite number of sets, say SI = A \  UAz U . .  . UAn 
and s2 = B U B2 U . . . U Bn , such that all the A, 's and all the B, 's are among themselves 
pairwise disjoint and yet A, is congruent to B, for all i .  It is therefore impossible to 
define meaures for these sets, since their union in one fashion yields a certain sphere 
and their union in a different fashion yields a sphere of different size! That such 
a construction is possible rests on the complicated structure, earlier pointed out by 
Hausdorff, of the group of rigid motions of three-dimensional Euclidean space. 

We close this section on measure theory with a few comments from Kac and Ulam. 

"Attempts to generalize the notion of measure were made from necessity. . . . For 
example, one could formulate theorems that were valid for all real numbers except 
for those belonging to a specific set. One wanted to state in a rigorously defined How can it be that 

way that the set of these exceptional points is in some sense small or negligible. One s, = A, u As u . . . u An, 

could 'neglect' merely countable sets as small in the noncountable continuum of all Sg = 61 u 83 u . . . u 
points but in most cases the exceptional sets turned out to be noncountable, though 
still of Lebesgue measure 0. In the theory of probability one has many statements 
that are valid 'with probability one' (or 'almost surely'). This simply means that they 

and Ai is congruent to Bi for 1 5 i 5 n? 
hold for 'almost all' points of an appropriate set; i.e., for all points except for a set of 
measure 0. In statistical mechanics one has important theorems that assert properties 
of dynamic systems that are valid only for almost all initial conditions. 

One final remark: 
The notion or concept of measure is surely close to the most primitive intuition. 

The axiom of choice, that simply permits one to consider a new set Z obtained by 
putting together an element from each set of a family of disjoint sets, sounds so 
obvious as to be nearly trivial. And yet it leads to the Banach-Tarski paradox! 

One can see why a critical examination of the logical foundation of set theory 
was absolutely necessary and why the question of existence of mathematical con- 
structs became a serious problem. 

If to exist is to be merely free from contradiction as Poincari decreed, we have 
no choice but to learn to live with unpleasant things like nonmeasurable sets or 
Banach-Tarksi decompositions." 

Consistency Theorems for Probability Measures 

Now let us return to probability theory and consider the construction of countably 

additive probability measures. To see that a finitely additive measure cannot always be 
extended to a countably additive measure, consider the set 0 of integers and take as 
elementary events the subsets A of fl such that either the set A is finite or the set Q - A  
is finite. Set 

0 if A is finite 
1 if 0 - A is finite. 

So, p(f2) = 1 and p, satisfies the axioms of finite additivity and complementarity. 
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MAPPING ELEMENTARY EVENTS 
ONTO THE UNIT INTERVAL 
Let each elementary event be one of the sets 
of all infinite binary sequences with the first 
two digits fixed Then there are four elementary 
events. 

2 P(Ei)  = Length of the unit interval 
;=I 

However, if p were countably additive, then we would have the contradiction 

Now consider the problem of defining a countably additive probability measure 
on the sample space Cl of all infinite two-letter sequences (each of which represents 
the outcome of an infinite number of independent tosses of a fair coin). Take as an 
elementary event a set E consisting of all sequences whose first rn letters are specified 
(m = 1,2, . . .). Since there are 2rn such elementary events, we use the axiom of finite 
additivity to assign a probability P of 112"' to each such event. Can this function 
P, which has been defined on- the elementary events, be extended to a countably 
additive measure defined on the u-field generated by the elementary events? Ulam 
and Lomnicki proved such an extension exists for any infinite sequence of independent 
trials. Kolmogorov obtained the ultimate consistency results by giving necessary and 
sufficient conditions under which an extension can be made from a finitely additive 
to a countably additive measure, including the case of non-independent trials. These 
extensions put the famous limiting laws of probability theory, such as the laws of large 
numbers, on solid ground. 

In the case of coin tossing we have chosen our elementary events to be sets 
of infinite sequences whose first rn digits are fixed and have assigned them each a 
probability of 112'" in agreement with the finitely additive measure. Now we will 
show that the measure defined by these choices is equivalent to Lebesgue's measure on 
the unit interval [0,1] and is therefore a well-defined countably additive measure. First 
associate the digit 1 with a head and the digit 0 with a tail and encode each outcome 
of an infinite number of tosses as an infinite sequence of 1's and 0's (101 10..  . , for 
example), which in turn can be looked upon as the binary representation of a real number 

(0 < t < 1). In this way we establish a correspondence between real numbers in 
[0,1] and infinite two-letter sequences; the correspondence can be made one-to-one 
by agreeing once and for all on which of the two infinite binary expansions to take 
when the choice presents itself. (For instance, we must decide between .01000. . . and 
.OO 1 1 1 . . . as the binary representation of 1 /4.) 

The use of the binary system is dictated not only by considerations of simplicity. 
As one can easily check, the crucial feature is that each elementary event maps into an 
interval whose length is equal to the corresponding probability of the event. In fact, 
fixing the first rn letters of a sequence corresponds to fixing the first m binary digits of 
a number, and the set of real numbers whose first rn binary digits are fixed covers the 
interval between i/lm and (Â + 1)/2'", where ! is 0 , 1 , 2 , .  . . , or 2"' - 1, depending on 
how the first rn digits are fixed. Clearly the length of such an interval, 1 /l'", is equal to 
the probability of the corresponding elementary event. Thus the probability measure in 
the sample space fl, of all infinite two-letter sequences maps into the ordinary Lebesgue 
measure on the interval [0,1] and is therefore equivalent to it. 

The space of all infinite sequences of 0's and 1's is infinite-dimensional in the 
sense that it takes infinitely many "coordinates" to describe each "point" of the space. 
What we did was to construct a certain countably additive measure in the space that 
was "natural" from the point of view of independent tosses of a fair coin. 
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This approach immediately suggests extensions to more general infinite-dimension- 
a1 spaces in which each coordinate, instead of just being 0 or 1, can be an element of 
a more general set and need not even be a number. Such extensions, called product 
measures, were introduced by Lomnicki and Ulam in 1934. (Stan's idea of writing a 
book on measure theory emphasizing the probabilistic interpretation of measure is the 
subject of the accompanying letter from von Neumann to Ulam.) Measures for sets 
of curves have also been developed. The best known and most interesting of these 
was introduced by Norbert Wiener in the early 1920s and motivated by the theory of 
Brownian motion. Mathematicians have since found new and unexpected applications 
of the Wiener measure in seemingly unrelated parts of mathematics. For example, it 
turns out that the Wiener measure of the set of curves emanating from a point p in 
space and hitting a three-dimensional region R is equal to the electrostatic potential at 
p generated by a charge distribution that makes the boundary of the "conductor" R an 
equipotential surface on which the potential is equal to unity. Since the calculation of 
such a potential can be reduced by classical methods to solving a specific differential 
equation, we establish in this way a significant link between classical analysis and 
measure theory. 

Random Variables and Distribution Functions 

Having introduced the measure-theoretic foundations of probability, we now turn 
to a convenient formalism for analyzing problems in probability. In many problems the 
possible outcomes can be described by numerical quantities called random variables. 
For example, let X be the random variable describing the outcome of a single toss of 
a fair coin. Thus, set X equal to 1 if the toss yields a head and to 0 if the toss yields 
a tail. This is an example of an elementary random variable; that is, X is a function 
with a constant value on some elementary event and another constant value on the 
complementary event. In general a random variable is a real-valued function defined 
on the sample space 0 that can be constructed from elementary random variables by 
forming algebraic combinations and taking limits. For example, N H ,  the number of 
heads obtained in n tosses of a coin, is a random variable defined on the sample space 
consisting of all sequences of T's and H ' s  of length n; its value is equal to Ey=l XI, 
where X, = 1 if the ith toss is a head and Xi = 0 otherwise. 

In evaluating the outcomes of a set of measurements subject to random fluctuations, 
we are often interested in the mean, or expected, value of the random variable being 
measured. The expected value E(X) (or m)  is defined as 

where X (w) is the value of X at a point w in the sample space and P (w)  is the probability 
measure defined on the sample space. In the case of a fair coin, P(X = 1) = 112 and 
P(X = 0) = 112, so the expected value of X is a simple sum: 

The expected value of a random variable X is most easily determined by knowing 
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its distribution function F. This function, which contains all the information we need 
to know about a random variable, is defined as follows: 

where the set X < t is the set of all points w in il such that X(w) < t. The form of this 
function is particularly convenient. It allows us to rewrite E(X), which is a Lebesgue 
integral over an abstract space, as a familiar classical integral over the real line: 

Furthermore, if X has a density function f (t) = dF (t)/dt, then 

The expected value is one of the two commonly occurring averages in probability and 
statistics; the other is the variance of X ,  denoted by ^(x) or var(X). The variance is 
defined as the expected value of the square of the deviation of X from its mean: 

The standard, or root-mean-square, deviation of X is defined as a(X) = VvarCX). 
Figures 3 and 4 illustrate two distribution functions, the binomial distribution 

function for the number of heads obtained in five tosses of a fair coin and a normal 
distribution function with a positive mean. 

The Laws of Large Numbers 

A historically important problem in probability theory and statistics asks for esti- 
mates on how a random variable deviates from its mean, or expected, value. A simple 
rough estimate is, of course, its root-mean-square deviation. An estimate of a different 
nature was obtained by the nineteenth-century mathematician Chebyshev. This esti- 
mate, known as Chebyshev's inequality, gives an upper limit on the probability that a 
random variable Y deviates from its mean E(Y) by an amount equal to or greater than 
a (a  > 0): 

Chebyshev's inequality: P(\Y - E(Y)\ :> a )  < var(y)/a2. 

This fundamental inequality will lead us to the famous laws of large numbers, which 
tell us about average values for infinite sequences of random variables. We begin by 
returning again to the coin loaded in such a way that p is the probability of a head in 
a single toss. If this coin is tossed a large number of times n ,  shouldn't the frequency 
of heads, Nn I n ,  be approximately equal to p ,  at least in some sense? 

This question can be answered on several levels. Let Xi be the random variable 
describing the outcome of the ith toss. Set Xi = 1 if the ith toss is a head and Xi = 0 if 

BINOMIAL DISTRIBUTION FUNCTION 

Fig. 3. The distribution function F(t)  for the 
number of heads obtained in n independent 
tosses of a fair coin is a binomial distribu- 
tion, so called because the probability of ob- 
taining k heads in n tosses of the coin is 
given by a formula involving binomial coef- 
ficients, namely ( i )  &. Shown here is the 
binomial distribution function for the num- 
ber of heads obtained in five tosses of the 
coin. The value of F ( t )  equals the probabil- 
ity that the number of heads is equal to or 
less than t. 
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(a) NORMAL DISTRIBUTION 
FUNCTION 

0 " m - a  G, m + ( ~  
t 

(b) NORMAL DENSITY FUNCTION 

dF(t)  f ( t )  = - 
dt  

Fig. 4. So many random variables can be 

described, at least approximately, by the 
distribution function shown in (a) that it is 

known as the normal distribution function. 
Examples of such random variables include 

the number of heads obtained in very many 

tosses of a coin and, as a general exper- 
imental fact, accidental errors of observa- 
tion. The value of Fit)  equals the probabil- 

ity that the value of the random variable is 

equal to or less than (t  - m)/u, where m 

is the mean, or expected, value of the ran- 
dom variable and u is its standard deviation. 

(The mean here is assumed to be positive.) 

Shown in (b) is the normal density function 

f(t) = dF(t)/dt, which gives the probabil- 

ity that the value of the random variable is 

( t  - m)/u. 

the ith toss is a tail. Then NH = XI + . . . + Xn. Also, the distribution function for each 
Xi is the same, namely, 

t < o  

1 < t .  

(Random variables that have the same distribution function are said to be identically 
distributed.) Now the expected value of NH /n is easy to compute: 

Thus, on the simplest level our guess is right: The frequency of heads, N H / ~ ,  is 
approximately equal to p in the sense that the expected value of NH /n is p .  But surely, 
even in a very long series of tosses, it would be foolish to expect NH/n to exactly 
equal p (and NT/n to exactly equal 1 -p). What one is looking for is a statement that 
holds only in the limit as  the number of tosses becomes infinite. 

Bernoulli proved such a theorem: As n gets larger and larger, the probability that 
NH In differs from its expected value p by more than a positive amount e tends to 0: 

lim 
nÃ‘>o 

where P,, is the probability measure on fin, the space of all sequences of H 's and T's 
of length n. No matter what positive e is chosen, the probability that the difference 
between the frequency of heads and p ,  the probability of a head in a single trial, exceeds 
e can be made arbitrarily small by tossing the coin a sufficiently large number of times. 

Let us see how Bernoulli's theorem follows from Chebyshev's inequality. First, 
notice that var(Xi) = p(1 - p) for all i .  Second, the random variables Xi , .  . . , X,, are 
independent (the outcome of the ith toss has no influence on the outcome of jth). Now, 
from the fact that E (XY ) = E (X)E (Y ) for independent random variables, we get 

n 

var(X1 + - - - +Xn) = 1 var(xi) = np(1 - p).  
;=1 

So, by Chebyshev's inequality 

( l N ~ / n  -pi > e) < np(1 -p)/n2e2 = p ( l  -p)/e^n. 

Thus, for each e > 0 

Notice that the measure-theoretic background of Bernoulli's theorem is trivial (at 
least as far as coin-tossing is concerned), since the events of interest correspond to 
finite sets. That is, for each n we need only estimate how many trials of length n there 
are such that the number of heads differs from np by more than en. Nevertheless, the 
simple argument just given can be generalized to prove the famous weak law of large 
numbers. 
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Weak law of large numbers: Let Xi ,  X'7,X3, . . . be independent, identically distributed 
random variables such that var(Xl) < oo. Then for each e > 0 

lim P ([(XI + . . . + Xn)/n - E(Xl)l > e) = 0. 
n + o o  

In other words, for any positive e the probability that the deviation between the 
frequency in n trials and the expected value in a single trial exceeds e can be made 
arbitrarily small by considering a sufficiently large number of trials. 

For our coin-tossing example NH / n  approximately equals p in another sense also. 
Suppose one asks for the probability that the frequency of heads (in the limit as the 
number of tosses becomes infinite) is actually equal to p. The answer was obtained by 
Bore1 in 1909: 

Notice the complexity of the question. In order to deal with it, the sample space fi is 
now by necessity the set of all infinite two-letter sequences w and the subset of interest 
is the set A of those sequences for which 

M, (w) lim - = p .  
11+oo n 

where N,,(w) is the number of H ' s  among the first n letters of the infinite sequence 
w.  It takes some work just to show that A is an event in the sample space 0. Unlike 
the question that led to the weak law of large numbers, this question required the full 
apparatus of modem probability theory. An extension of Borel's result by Kolmogorov 
is known as the strong law of large numbers. 

Strong law of large numbers: Let X I ,  X 2 ,  X 3 ,  . . . be independent, identically distributed 
random variables such that E(\Xi\) < oo. Then 

An Application of the Strong Law of Large Numbers. Let us illustrate the power 
of the strong law of large numbers by using it to answer the following question: What 
is the probability that, in an infinite sequence of tosses of a fair coin, two heads occur 
in succession? 

We will first answer this question using only the rules governing the probabilities 
of independent events. In particular, we will use the axioms of countable additivity and 
complementarity and the rule of multiplication of probabilities. Let A<.- be the event that 
a head occurs on the (2k - 1)th toss and on the (2k)th toss. Each A;- is an elementary 
event, and P(Ak) = 114. Now, by the axiom of countable additivity, [jÂ¡Â Ak is an 
event; in particular, it is the event that, for some k, heads occur on the (2k - 1)th and 
2kth tosses. By the axiom of complementarity, 
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Since the eventsAi,A2,A 3, . . .  are independent, the events 0 - A i , O - A 2 , Q - A 3 , . . .  
are also independent, and we can apply the rule of multiplication of probabilities: 

Finally, by the axiom of complementarity, P ( U A ~ )  = 1; that is, there exists, with 
probability 1, some k such that the (2k - 1)th and (2k)th tosses are heads. 

Now we will answer the same question by using the strong law of large numbers. 
Let Xi be the random variable such that 

1 i f w ? A ;  
Xi (w) = 

0 i f w $ A ;  

Then X I ,  Xz, X3, . . . is a sequence of independent random variables. Also, they all have 
the same distribution: (P(Xi = 1) = 114, P(X; = 0) = 314, and E (Xi) = 114. Therefore, 
according to the strong law of large numbers, 

lim (XI + . . . +Xll)/n = 114 with probability 1 
n-+m 

This result is stronger than that obtained above. It guarantees, with probability 1 ,  the 
existence of infinitely many k's such that heads occur on the (2k - 1)th and (2k)th 
tosses; further, the set of all such k's has an arithmetic density of 114. 

Borel's theorem marked the beginning of the development of modem probabil- 
ity theory, and Kolmogorov's extension to the strong law of large numbers greatly 
expanded its applicability. To quote Kac and Ulam: 

"Like all great discoveries in mathematics the strong law of large numbers has 
been greatly generalized and extended; in the process it gave rise to new problems, 
and it stimulated the search for new methods. It was the first serious venture out- 
side the circle of problems inherited from Laplace, a venture made possible only by 
developments in measure theory. These in turn were made possible only because of 
polarization of mathematical thinking along the lines of set theory." 

The polarization Kac and Ulam were referring to concerns the great debate at the 
turn of the century about whether the infinite in mathematics should be based upon 
Cantor's set theory and its concomitant logical difficulties. The logical problems have 
been met, and today we use Cantor's theory with ease. 

The Monte Carlo Method. One of Stan Ulam's great ideas, which was first developed 
and implemented by von Neumann and Metropolis, was the famous Monte Carlo 
method. It can be illustrated with Chebyshev's inequality. Suppose that we need 
to quickly get a rough estimate of hw (sinx)/x3 dx. Setting t = \/x, the problem then 

is to estimate t sin(1 I t )  dt. Let y , ,  . . . , yn be independent random variables each 
uniformly distributed on [O, I ] .  That is, for all i, P (a < yi < b) = b - a ,  where (a , b)  
is a subinterval of [0,1]. Now set f (t) = t sin(l/t) and for each i let Xi = f (y; ) .  Then 
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XI, . . . , Xn is a sequence of independent identically distributed random variables. Also, 

and 

By Chebyshev's inequality we have 

< var (1 /n) EX; /a2 $ var(x1)/na2 -) ( : ) 
Thus if n is large, (1/n) xk, Xi is, with high probability, a good estimate of the value 
of the integral. For example, if a = 0.005 and n = 134,000, then 

In other words, if we chose 134,000 numbers y i ,  . . . ,y134,000 independently and at 
random from [O, 11, then we are 90 percent certain that (1 / 134,000) ~ , ' ~ ~ ' 0 0 0  yi sin(1 /y; ) 
differs from the integral by no more than 0.005. So, if we can statistically sample the 
unit interval with numbers yl , . . . , yn , then 

(The reader may well wonder why such a large number of sample points is required 
to be only 90 percent certain of the value of the integral to within only two decimal 
places. The answer lies in the use of Chebyshev's inequality. By using instead the 
stronger central limit theorem, which will be introduced below, many fewer sample 
points are needed to yield a similar estimate.) 

The Monte Carlo method is a wonderful idea and, of course, tailor-made for 
computers. Although it might be regarded simply as an aspect of the more ancient 
statistical sampling technique, it had many exciting new aspects. Three of these are 
(1) a scope of application that includes large-scale processes, such as neutron chain 
reactions; (2) the capability of being completely implemented on a digital computer; 
and (3) the idea of generating random numbers and random variables. How do we 
mechanically produce numbers yl , . . . , y,, in [O, 11 such that the y; 's are independent 
and identically distributed? The answer is we don't. Instead, so-called pseudo-random 
numbers are generated. Many fascinating problems surfaced with the advent of Monte 
Carlo. Dealing with them is one of the major accomplishments of the group of intellects 
gathered at Los Alamos in the forties and the fifties. (See "The Beginning of the Monte 
Carlo Method.") 
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Central Limit Theorem 

We close this tutorial by returning to the deMoivre-Laplace theorem and inter- 
preting it in the modem context. Let Xi be a random variable describing the outcome 
of the ith toss of a coin; set Xi = 1 if the ith toss is a head and Xi = 0 otherwise. Let 
Sn be the number of heads obtained in n tosses; that is Sn = XI + a . + X,, . Then the 
de Moivre-Laplace theorem can be stated as follows: 

Now np = nE(Xl) = E ( S n )  and \/np(\-) = &(Xi) = cr(Sn). So if we "renormal- 
ize" S,, by setting Yn = (s,, - E ( s ~ ) ) / ~ ~ ( s ~ ) ,  each Yn has a mean of 0 and a standard 
deviation of 1. Then the equation above tells us that the distribution function of Y,, 
tends to the standard normal distribution. The central limit theorem is a generalization 
of this result to any sequence of identically distributed random variables. We state the 
central limit theorem formally. 

Central limit theorem: Let Xi,  X2, X3, . . . be a sequence of independent, identically 
distributed random variables with E(Xl) = m and var(Xi) = u2 < oo. Set S,, = 

Xi + - - - + X , , .  Then 

Thus the normal distribution is the universal behavior in the domain of independent 
trials under renormalization. Its appearance in so many areas of science has led to 
many debates as to whether it is a "law of nature" or a mathematical theorem. 

Thanks to the developments in modem probability theory, we begin our investi- 
gations with many powerful tools at our disposal. Those tools were forged during a 
period of tremendous upheavals and turmoil, a time when very careful analysis carried 
the day. At the heart of that analysis lay the concept of countable additivity. Stan 
Ulam played a seminal role in developing these tools and presenting them to us. 
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PROBABILISTIC 
APPROACHES 

to NONLINEAR 
PROBLEMS 

Problem 1. Energy Redistribution: 
An Exact Solution to a Nonlinear, Many-Particle System 

Ulam's talent for seeing new approaches to familiar problems is evident in one 
he posed concerning the-distribution of energy in physical systems. Will the energy 
distribution of an isolated system of N interacting particles always evolve to some 
limiting energy distribution? And, if so, what is the distribution? (Note that this 
question differs from the one asked in statistical mechanics. There one assumes that 
at equilibrium the system will have the most probable distribution. One then derives 
that the most probable distribution is the Boltzmann distribution, the density of which 
is f l  .) 

Obviously, following the evolution of a system of N interacting particles in 
space and time is a very complex task. It was Stan's idea to simplify the situation 
by neglecting the spatial setting and redistributing the energy in an abstract random 
manner. What insights can one gain from such a simplification? One can hope for 
new perspectives on the original problem as well as on the standard results of statistical 
mechanics. Also, even if the simplification is unrealistic, one can hope to develop some 
techniques of analysis that can be applied to more realistic models. In this case David 
Blackwell and I were able to give an exact analysis of an abstract, highly nonlinear 
system by using a combination of the machinery of probability theory and higher order 
recursions (Blackwell and Mauldin 1985). We hope that the technique will be useful 
in other contexts. 

Let us state the problem more clearly and define what we mean by redistributing 
energy in an "abstract random manner." Assume we have a vast number of indistin- 
guishable particles with some initial distribution of energy, and that the average energy 
per particle is normalized to unity. Further, let us assume the particles interact only 
in pairs as follows: At each step in the evolution of the system, pair all the particles 
at random and let the total energy of each pair be redistributed between the members 
of the pair according to some fixed "law of redistribution" that is independent of the 
pairs. Iterate this procedure. Does the system have a limiting energy distribution and, 
if so, how does it depend on the redistribution law? 

Part 111 
PROBABILITY and NONLINEAR SYSTEMS 

The Simplest Redistribution Law. To begin we will consider the simplest redistri- 
bution law: each particle in a random pair gets one-half the total energy of the pair. If 
the number of particles in the system is finite, it is intuitively clear that under iteration 
the total energy of the system will tend to become evenly distributed-all the particles 
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SIMPLEST LAW FOR ENERGY 
REDISTRIBUTION 

Random Pair ' Outcome ' after Redistribution 

Equal Sharing 
of Total Energy 

LIMITING ENERGY DISTRIBUTION 

t 

Fig. 5. Consider a system of N particles 
with some arbitrary initial distribution of en- 

ergy. Assume that the initial mean energy 
is 1 and that the particles interact in pairs. 
Assume further that the total energy of an 
interacting pair is redistributed so that each 
member of the pair acquires one-half the to- 
tal energy of the pair. Then with probability 
1 the system reaches a limiting energy dis- 
tribution described by a step function with a 
step height of 1 at t = 1. That is, the proba- 
bility that the energy per particle is less than 
t equals 0 for t < 1 and equals 1 (the initial 
mean energy) for t > 1. 

will tend to have the same energy. So, a system with only finitely many particles has a 
limiting distribution of energy, namely, a step function with a jump of size 1 at t = 1 ,  
and moreover, no matter what the initial distribution of energy is, the system tends to 
this distribution under iteration. 

Even for a system with a continuum of particles, our observations for the finite 
case still hold. In order to see this, we formalize the problem in terms of probability 
theory. 

Let X be a random variable corresponding to the initial energy of the particles. 
Thus, the distribution function Fl associated with X is the initial distribution of energy: 
F l ( t )  = P(X < t) is the proportion of particles with energy less than t. Our arguments 
and analysis will be based only on the knowledge of the energy distribution function and 
how it is transformed under iteration by the redistribution law. In terms of distribution 
functions, our normalization condition, that the average energy per particle is unity, 
means that the expected value of X , fnm t d F  At), equals 1. 

We seek a random variable T(X) corresponding to the energy per particle after 
applying the redistribution law once. To say that the indistinguishable particles are 
paired a t  random in the redistribution process means that, given one particle in the 
pair, we know nothing about the energy of the second except that its distribution 
function should be the initial distribution function F l .  In other words, we can describe 
the energy of the randomly paired particles by two independent random variables XI 
and X2, each having the same distribution as X. Thus the simplest redistribution law, 
according to which paired particles share the total energy of the pair equally, can be 
expressed in terms of T(X), X1, and X2 as 

The new distribution of energy, call it F2, that describes the random variable T(X) 
will be a convolution of the distributions of XI 12 and X2/2. Since XI and X2 both have 
the distribution F l ,  the distribution F2 of T ( X )  is given by 

To cany out the second iteration, we repeat the process. The energy T ~ ( x )  = 
T (T(x)) will have the same distribution as (Yl +Y2)/2, where Yl and Y2 are independent 
and each is distributed as T(X). In other words, if we let XI ,  X2, X 3 ,  and X4 be 
independent and distributed as XI ,  then Yl is distributed as (XI + X^)/2, and Y2 is 
distributed as (X3 +X^)/2. The energy is distributed as T*(x) = (Xi + X2 + X3 + X4)/4. 

After n iterations the energy per particle will have the same distribution as T"(X) = 
(Xi +- - -+Xy)/2", where the Xi's are independent and distributed as X. This expression 
for Tn(X) is exactly the expression that appears in the strong law of large numbers (see 
page 71). Therefore the strong law tells us that the limiting energy of each particle w 
as n Ã‘ cc is 

X1(w) + . .  +Xp(w) 
lim T n  (X (w)) = lim 

2" 
= E(Xl) = 1, almost surely, 

11- n-w 

where E(Xl) is the expected value of the initial distribution Thus, after n iterations of 
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this random process, the energies of almost all particles converge to unity. In terms of 
distribution functions, we say that in the space of all "potential" actualizations of this 
iterative random process, almost surely, or with probability 1, the limiting distribution 
of energy will be a step function with a jump of size 1 at t = 1 (Fig. 5). 

Notice that for this simplest redistribution law (1) the redistribution operator T is 
a simple linear operator and (2) even so, the strong law of large numbers is needed to 
determine the limiting behavior. 

More Complicated Redistribution Laws. Stan proposed more interesting laws of 
redistribution. The redistribution operator T for each of these laws is nonlinear, and 
different techniques are needed to analyze the system. For example, after pairing the 
particles, choose a number a between 0 and 1 at random. Then instead of giving 
each particle one-half the total energy of the pair, let us give one particle a times the 
total energy of the pair and give the other particle (1 - a)  times the total energy. The 
energy T(X) will then have the same distribution as U (XI +X2), where U is uniformly 
distributed on [O, 11 (that is, all values between 0 and 1 are equally probable) and U , X I ,  
and X2 are independent. What happens to this system under iteration is a much more 

RANDOM LAW FOR ENERGY 
REDISTRIBUTION 

LIMITING ENERGY DISTRIBUTION 
A 

complicated matter. For one thing, unlike the redistribution operator in the simplest 
case, the operator T is now highly nonlinear and the law of large numbers is not 
available as a tool. A new approach is required. To get an idea of what to expect, 
Stan first used the computer as an experimental tool. From these studies he correctly 
guessed the limiting behavior (Ulam 1980): no matter what the initial distribution of 
energy is, we have convergence to the exponential distribution (Fig. 6). 

Let me indicate how Blackwell and I proved this conjecture. We used a classical I 
method of moments together with an analysis of a quadratic recursion. For now let us o 1 

t 
assume that a stable limiting distribution exists and let X have this distribution. Then 
T(X) = U(X1 + X2) has the same distribution. So, calculating mn, the nth moment of 
X (that is, the expected value of Xn), we have 

mn = E ( x n )  = E (T(x)") = E ((u(x, +x2))") = E ( u n ( x ,  +x2)I7). 

By independence and the binomial theorem 

Fig. 6. Consider a system identical to the 
one described in Fig. 5 except that the total 
energy of an interacting pair is redistributed 

randomly between the members of the pair. 
In particular, assume that one particle re- 
ceives a randomly chosen fraction a of the 
total energy and the other particle receives 

1 
, = E(U")E ((x, + x ~ ) ~ ! )  = -E E ( x ~ - P )  the remainder. The system still reaches a 

n + 1 limiting energy distribution, one equal to 0 
for t < 0 and equal to 1 - e t  for t > 0. 

Since X1 and X2 are independent, the expected value of each product is equal to the 
product of the expected values, E (X < X ; p )  = E (X )E (Xl -p). Substituting this into 
the equation above and using the definition of moments, we have 

Using the fact that mo = 1, we solve for mn. 
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This is a quadratic recursion formula. Substituting the initial condition ml = 1, we find 
that m2 = 2 and m3 = 6. An induction argument shows that mn = n!  for all n .  But 
n! is the nth moment of the exponential distribution! Of course, our assumption is that 
a stable distribution and all its moments exist. It takes some work to prove that this 
assumption is indeed true and that no matter what initial distribution one starts with, 
the distribution of the iterates converges to the exponential. 

It should not be too surprising that our result agrees in its general form with 
the Boltzmann distribution of statistical mechanics. After all, both are derived from 
similar assumptions. The Boltzmann distribution is derived from the assumptions that 
( I )  energy and the number of particles are conserved, (2) all energy states are equally 
probable, and (3) the distribution of energy is the most probable distribution. In our 
problem we also assumed conservation of energy and number of particles. Moreover, 
taking U in our redistribution law to be the uniform distribution makes all energy states 
equally probable. The difference is that the iteration process selects the most probable 
distribution with no a priori assumption that the most probable distribution will be 
reached. 

We can go further and replace U by any random variable with a symmetric distri- 
bution on [0,1]. The symmetric condition insures that the particles are indistinguishable. 
We call the distribution of U the redistribution law. Again, one obtains a quadratic 
recursion formula. Blackwell and I analyzed this formula and showed that for every 
such U the system tends toward a stable limiting distribution. In other words, there is 
an attractive fixed point in the space of all distributions. Moreover, there is a one-to-one 
correspondence between the stable limiting distribution and the redistribution law that 
yields it. 

Momentum Redistribution. There is a corresponding momentum problem. Assume 
we have a vast number of indistinguishable particles (all of unit mass) with some initial 
distribution of momentum. Let us assume that the particles interact in pairs as follows. 
At each step in the evolution of the system, pair all the particles at random and let the 
total momentum of each pair be redistributed between the members of the pair according 
to some law of redistribution that is independent of the pairs. Of course, we wish to 
conserve energy and momentum. These conservation laws place severe constraints on 
the possibilities. If v l  and v2 are the initial velocity vectors of two particles in a pair 
and v\ and v i  are the velocity vectors after collision, then by momentum conservation 

and by energy conservation 

I l 2  + 11v2112 = llv/, 1 1 2  + llv2112. 

Consider this process in the center-of-mass frame of reference. Let A; be the fraction 
of the total kinetic energy that particle i has after collision and let ui be the unit vector 
in the direction of the velocity of particle i. Then 

and 
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From these equations it follows that Ai  = A2 = 112 and v2 = -vi. What this means 
is that all we can do is choose in the center-of-mass frame a new direction vector 
for one of the two colliding particles. Everything else is then determined. The other 
particle goes in the opposite direction, and the total kinetic energy in the center-of- 
mass frame is divided evenly between the two particles. Thus, the only element of 
randomness is in how the new direction vector is chosen. If all directions are assumed 
to be equiprobable, then it can be shown that no matter what the initial distribution of 
velocity is, the system tends under iteration to a limiting distribution that is the standard 
normal distribution in three-dimensional Euclidean space SR3. We have thus rederived 
the Maxwell-Boltzmann distribution of velocities. Here again we can go further and 
consider more complicated redistribution laws. 

Suppose one allows ternary collisions instead of binary collisions. Then there are 
more degrees of freedom, and the problem again becomes interesting mathematically. 
The results of our analysis show that the situation is much like the redistribution of 
energy in that the limiting distribution of velocity depends on the law of redistribution 
of velocity. 

Problem 2. Geometry, Invariant Measures, and Dynamical Systems 

The intimate relationship among geometry, measures, and dynamical systems that 
was elucidated in the last century continues to deepen and hold our attention today. 
Poincare made several monumental contributions to this development in his treatise 
Les Mithodes Nouvelles de la Micanique Celeste. One major issue he considered 
concerned the stability of motion in a gravitational field such as that of our solar system. 
Would small perturbations from any given set of initial orbits lead to a collision of the 
planets? A tremendous amount of work had been done on this dynamical system, 
but the governing system of differential equations remained unsolved. Faced with this 
situation, Poincare made a wonderful flanking maneuver by introducing "qualitative" 
methods that involved measures. 

For the setting consider the motion of N bodies and the corresponding phase space 
S ,' whose 6N coordinates code the position and momentum of each of the N bodies. 
The phase space is a subset of Euclidean 6N-space and each point of S corresponds to 
a state of the system. Consider T, the time-one map of S . That is, if s is the initial 
state of the system, then T(s) is the state of the system one time unit later. Now, 
various notions of stability can be given in terms of the properties of T .  One of these 
is recurrence, or, as Poincar6 said, "stabilit6 la Poisson." A state s is said to be 
recurrent provided that if the system is ever in s ,  then it will return arbitrarily close to 
s infinitely often. Formally, s is recurrent provided that for every open region U about 
s there are infinitely many positive integers n such that Tn(s) is in U .  Poisson had 
earlier attempted to show this kind of stability for the restricted three-body problem. 
Poincar6 used the fundamental tenet of measure theory, countable additivity, to prove 
that the set of all points s in the phase space for which recurrence does not occur is of 
measure zero. 

Recurrence Theorem: Let B = (s â S 1s is not recurrent). Then B has measure zero. 

Poincare's proof of this theorem (see "The Essence of Poincare's Proof of the Re- 
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balls may be). For each n let Bn be the 
set of points in Un that are not recurrent; 
that is, En consists of all points s ? Un 
such that Tp(s) ? UÃ for only finitely 
many positive integers p .  Now consider 
the ~ t t  5 = Uzi B n  g that is, the set of 
all points that are not recurrent. Since 
the measure v is assumed to be countably 
additive, we have v(5) < zz ~ ( 5 % ) .  
Poincarii also assumed that the notion of 
volume could be extended to sets Bn that 
are more complicated than open regions. 

v (& )=  0 for each 8. 
The 

has measure zero. Bi! 

currence Theorem") is a shining jewel that made clear to the mathematical world the 
importance of countable additivity in the development of measure. 

But what measure did Poincar6 have in mind here? After all, there is an entire 
grab bag of measures on the subsets of S. In the case of the N-body problem, since 
the system is a Hamiltonian system, the geometry of the phase space clearly indicates 
the correct measure. Let us see why. Liouville had proved the seminal result that if 
the map T that describes the time evolution of the system is a Hamiltonian, then T 
is volume-preserving in the phase space. That is, if U is an open set or region, then 
v (U ) = v (T (U )) , where v (E) is the volume of E . Poincar6 carried out his analysis on 
a "surface of constant energy." Since the N-body problem is a conservative system, 
the function T leaves the total energy invariant and therefore maps each such surface 
into itself. Moreover, since T is a Harniltonian, it is volume-preserving on this surface. 
Consequently, the geometric structure of the surface determines the appropriate measure 
to use. Since the surface is a manifold, by definition there is a positive integer m such 
that each point of S lies in a region that is geometrically the same as a piece of Euclidean 
m-dimensional space. So, the measure to use on the manifold S is the one we naturally 
associate with Euclidean m-dimensional space, namely, m-dimensional volume. 

Geometry and Dynamical Systems 
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To summarize, the N -body problem is a classical dynamical system in which the 
time-one map T is a continuous one-to-one map of the phase space X onto itself. 
The inverse map, T 1 ,  is also continuous. Thus, T is a homeomorphism. There is a 
natural measure on the phase space X that is invariant under T. From one point of 
view, this measure is the volume element corresponding to the dimension of the phase 
space. From another viewpoint the natural invariant measure expresses the fact that the 
system is a Hamiltonian system. In the phase space X a surface S of constant energy 
forms an invariant set, and again there is an invariant measure on S corresponding to 
our ordinary notion of volume. The set B of all points that are not recurrent is also 
an invariant set with respect to T. However, it is not at all clear that we can define 
some natural invariant measure on B that is both nonzero and invariant under T. Many 
dynamical systems being studied today "live" on invariant sets that, like B, are not 
manifolds. Instead they are "pathological" sets, sets that at one time were thought to 
be the private domain of the purest and most abstract mathematicians. The examples 
range from Cantor sets to nowhere-differentiable curves to indecomposable continua. 
Many of these pathological invariant sets are "strange attractors" of dynamical systems; 
the system is "attracted" in the sense that it will eventually end up on the set from any 
starting point. (The discovery of one of the first strange attractors is described in the 
section Cubic Maps and Chaos of the article "Iteration of Maps, Strange Attractors, 
and Number Theory-An Ularnian Potpourri.") 

Properties of Invariant Sets. Let us now indicate some of the problems and 
techniques used in studying such sets in the context of dynamical systems. We will 
consider discrete dynamical systems, that is, systems in which the time evolution is 
described by discrete steps. We consider a function T that maps a space X into itself 
and the iterates of T, that is, T' , T', r 3 ,  . . . , where Tn+' (x) = T (T "(x)) . We are 
interested in an invariant set-a subset M of X such that T(M) c M. The simplest 
invariant set consists of a fixed point x such that T(x) = x; a more complicated invariant 
set is a periodic orbit, a set consisting of the points x,  T(x), . . . , T"-~(x), and Tn(x) = x. 
Invariant sets are further classified according to how points near the invariant set behave 
under T. An invariant set M is called an attractor if there is a region U surrounding 
M such that if x U, then Tn(x) gets closer and closer to M as n increases. On the 
other hand, M is called a repeller if there is a region U surrounding M such that if 
x e (U - M ), then Tn(x) is not in M for n sufficiently large. For example, if X is the 
real number line, then 0 is an attracting fixed point for T(x) = x/2 and a repelling fixed 
point for T^(x) = 2 x .  The intrinsic properties of an invariant set are also of interest. 
For example, one might want to know whether there is a point x of M such that the 
orbit of x,  that is, x,  T(x), T~(x) ,  . . . , is dense in M. If T is an irrational rotation of 
the plane, then the unit circle is invariant and the orbit of every point on the circle is 
dense in the circle. Another possibility is that T is topologically mixing on M;  that is, 
for every region U of M there is some n such that M c Tn(U). 

One central problem we will look at in some depth is the construction of "natural" 
or useful invariant measures for the sets M.  In particular we want a measure p such 
that p(X - M )  = 0 and p (T-'(B)) = d B )  for each measurable subset B of M.  That is, 
the measure is zero for points outside the invariant set M and is invariant with respect 
to the inverse of T. 
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Cantor's Set as an Invariant Set. Let us consider a simple example of a map 
whose invariant set is Cantor's middle-third set. Let X be the real number line and let 
T(x) = (3/2)(1 - \2x - 1 I). Then T is a two-to-one map of X into itself, the "triangle 
function" whose graph is shown in Fig. 7. This transformation can also be written in 

I the following form: 
if x < 112 

T (x) = 

Now consider what happens to x under the iterates of T. If x < 0, then Tn(x) = 3"x 
and Tn(x) + -a. If 1 < x ,  then T(x) < 0 and higher iterates are given by 3"(1 -x). 
Again, T" (x) + -00. Thus, the iterates of all points outside the interval [0,1] are 
repelled. On the other hand, x = 0 is a fixed point, and, since T(l/4) = 314 and 
T(3/4) = 114, the set {1/4,3/4} forms a periodic orbit of order 2. It turns out that 
there is a natural invariant set under the iterates of T that lies in the interval [0,1]. 
To find it we consider successive iterations of T and keep track of the parts of the 
interval [0,1] that are mapped outside the interval by each interation. The first few 
iterations of T are illustrated in Fig. 8 and are described below. If x is in the open 
interval (1/3,2/3), T(x) > 1, and thus T maps this open interval out of the interval 
[0,1]. The two intervals Ji = [O, 1/31 and J2 = [2/3,1] are each mapped onto [O, 11. 
Thus, Ji U J2 consists of all points remaining in the interval [0,1] after one iteration. 
What points of Jl remain in [0,1] after the second iteration? The middle third of J l ,  
namely (1 19,219) is mapped out of the interval [O, 11 by the second iteration of T ,  and 
the two subintervals JH = [O, 1/91 and Jn = [2/9, 1/31 make up the points of J l  that 
remain in [O, 11 after two iterations of T. Similarly, the middle third of J2,  (7/9,8/9), 
is mapped out of [0,1] by T2, and the two subintervals of J2,  Ja = [2/3,7/9] and 
J 2 2  = [8/9, 11, make up the points of J2 that remain in [0,1] under T ~ .  Continuing this 
analysis, we find that the points of [0,1] that remain in [0,1] after n iterations of T 
consist of 2" intervals. Moreover, they are precisely the same 2" intervals that appear 
in the construction of Cantor's famous middle-third set. Thus, Cantor's middle-third 
set, call it M ,  is invariant under T, and if x # M,  then for some k ,  T ~ ( x )  is not in 
[0,1]. Thus, if x # M ,  Tn(x) + -a. The Cantor set is a repellent invariant set of T ,  
and this map is also topologically mixing on M .  

Hausdorff Measure and Dimension. If we think of T as an analog of a dynarnical 
system whose motion in phase space is restricted to a Cantor set we might like to 
find a natural measure on this set. Our problem is: Which one of the many possible 
invariant measures is useful? One clue for determining the appropriate measure for 
the N-body problem was the fact that the phase space is a manifold and we therefore 
know the dimension of the space. We could then use the corresponding volume in the 
Euclidean space of that dimension to guide us to the correct measure. But what do we 
do with the Cantor set of our example? What is its dimension? In the early part of 
this century Felix Hausdorff developed an approach for determining the dimension of 
a general metric space (a space with a notion of a metric, or distance, between points) 
in terms of measures associated with the metric. It is perhaps surprising at first that the 
dimension of a space may not be an integer. Such spaces have been christened fractals 
by Mandelbrot, and he has provided many examples of their occurrence in physical 
phenomena. The idea behind Hausdorff's generalization of dimension is very simple 
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An invariant set for the transfer- 
matlon defined in Fig. 7 eonÃ§ist at all the 
closed subintervals of [0,1] that are not 
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and is based on the idea of self-similarity or scaling. 
Let's take the simplest example, the unit square. We could say that the dimension 

of the unit square is 2 for the following reason. Consider any scaling transformation 
f (x) = Ax, where x is a point in the plane. The transformation f is called a similarity 
map of the plane and the image of the unit square under f will be a square whose area 
is A2. The power to which we raise the scaling exponent to obtain the measure of the 
image set is the dimension of the original set. Exactly the same reasoning shows that 
the unit cube in Euclidean n space has dimension n. 

The generalization to more complicated metric spaces is straightforward. Consider 
a general metric space X. A map f is a similarity map of a subset E of X if the distance 
between points in E scale by a factor r under the action of the map. In other words 
there is a number r such that for all x and y in E ,  dist(f(x), f (y)) = r dist(x,y). 
Hausdorff defined for each number f3 > 0 a measure H {3 on X that obeys the scaling 
law of Hausdorff measures. 
Scaling law of Hausdorff measures: If E c X and f is a similarity map of E onto 
f (E) with similarity ratio r ,  then H V ( E ) )  = ~ W ( E ) .  

While the measures H 0  are defined on the metric space for all values of Q > 0, 
Hausdorff showed that there is one and only one measure H a  for which a "jump" 
occurs. He called a the dimension of the metric space. 
Hausdorff dimension theorem: For each metric space X, there is a number a such 
that if Q < a,  then H ~ ( x )  = oo and if a < 0 ,  then H^(x) = 0. The number a is 
called the Hausdorff dimension of X. 

How do Hausdorff's definitions of measure and dimension compare with our 
ordinary notions in Euclidean space? It turns out that the Hausdorff dimension of 
n-dimensional Euclidean space is n (which it should be, of course) and the associated 
Hausdorff measure H n  is the same as our usual definition of volume element. Thus, 
H a  is a natural generalization to a space of dimension a of our ordinary notions of 
measure, or volume element, in Euclidean space. Once the Hausdorff dimension a of 
a space is known, we have a natural measure on the space, namely H a .  So the first 
problem is to determine the dimension of the space under consideration. 

Hausdorff Dimension of Cantor's Middle-Third Set. As an example, we will show 
that the self-similarity properties of the middle-third Cantor set C define its Hausdorff 
dimension as log 2/ log 3. (In fact, Hausdorff proved this in his original paper.) 

Consider the two similarity maps fl(x) = x /3  and f2(x) = x /3  + 213. Then 
fl(C) = C n [O, 1/31 and f2(C) = C r l  [2/3,1]. So C = fl(C) U f2(C). Since fi(C) and 
fi(C) are disjoint and H a  is a measure, 

By the scaling law, H"(/~(C)) = (l/3)"H0(C) and H"(^(c)) = (1/3)"Ha(C). 
Therefore 

Ha(C)  = (l/3)"Ha(C) + (1/3)"H "(C) = (2/3")Ha(C). 

Cancelling H w), we have 
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We conclude that the Hausdorff dimension of C is log 21 log 3. Of course, this is only 
a heuristic argument (because we cannot cancel Hff(C) unless H a ( C )  is positive and 
finite), but it can be justified. 

Returning to our example T(x) = (3/2)(1 - \2x - I[), we have shown that the 
invariant set M is Cantor's middle-third set and that the Hausdorff dimension of M is 
a = log 21 log 3. In fact p = H ", Hausdorff's volume element in dimension a, is an 
invariant measure on M . 

Our analysis of this example is typical of the analyses of many discrete dynarn- 
ical systems. We found an invariant set M that is constructed by an algorithm that 
analyzes the behavior of points near M.  The first application of the algorithm yields 
nonoverlapping closed regions Jl, . . . , Jn the second yields nonoverlapping subregions 

Ji . . . , Jin in each J i ,  and so forth. Finally, the invariant set M is realized as 

In this example the construction is self-similiar; that is, there are scaling ratios 
tl ,  . . . , tn such that a region at iteration k, Jil... ik and a subregion at level k + 1, Ji ,... ik+, , 
are geometrically similar with ratio ti,, . (In our example ti = ti = 113.) When such 
similarity ratios exist, one can use a fundamental formula due to P. A. P. Moran for 
calculating the Hausdorff dimension of the invariant set. 

Theorem: If M = flzl (uiSn Jil.,, ik), then dim(M) = a, where a is the solution of 
t ? + . . - + t E  = 1. Moreover, 0 < Hff(M) < +oo. 

That is, a is the Hausdorff dimension of M ,  and H a  is a well-defined finite measure 
on M.  

Random Cantor Sets. One of my current interests centers on analyzing the invariant 
sets obtained when the dynarnical system experiences some sort of random perturba- 
tion. The perturbation introduces a perturbation in the algorithm used to construct the 
invariant set. Thus we randomize the algorithm, and the scaling ratios ti, t2, . . . , t,,, 
instead of having fixed or deterministic values as before, are now random variables that 
have a certain probability distribution. One theorem of Williams and mine (Mauldin 
and Williams 1986) is that the Hausdorff dimension of the final "perturbed" set M is, 
with probability 1, the solution of 

where E (t? + t? +. - -) is the expected value of the sum of the ath powers of the scaling 
ratios. Note that this formula reduces to Moran's formula in the deterministic case. 

As an example suppose our randomly perturbed system produces Cantor subsets 
of [0,1] as follows. First, choose x at random according to the uniform distribution on 
[0,1]. Then between x and 1 choose y at random according to the uniform distribution 
on [x, 11. We obtain two intervals Jl = [0,x] and J2 = [y, 11. Now in each of these 
intervals repeat the same procedure (independently in each interval). We obtain two 
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THE GOLDEN MEAN 

Fig. 9. (a) Consider a rectangle with sides 
of length A and B, A < B. Let r denote 
the ratio of A to B. Divide this rectangle 
into a square of side A and a new rectan- 
gle. If the ratio of the lengths of the sides of 
the new rectangle, (B - A)/A, also equals 
r, then both the original rectangle and the 
new rectangle are golden rectangles and r 
is equal to the golden mean m. (The nu- 
merical value of m, (& - 1)/2, is obtained 
by solving the two simultaneous equations 
r = A/ B and r = (B - A)/A.) (b) The process 
of dividing a golden rectangle into a square 
and a new golden rectangle can, of course, 
be continued indefinitely. It can be shown 
that the logarithmic spiral given in polar co- 
ordinates by log p = m0 passes through 
two opposite vertices of each successively 
smaller square. This fact may help explain 
why the Hausdorff dimension of the random 
Cantor sets described in the text is equal to 
the golden mean. 

subintervals of Ji, Jll and J iz ,  and two subintervals of J2,  J21 and 722. Continue this 
process. We will obtain a random Cantor set, and its Hausdorff dimension a is, with 
probability 1, the solution of E (tr + t̂ \ = 1, or 

A little calculus shows that 

V^- 1 a=-  
2 

, the golden mean! 

A problem left for the reader: Why should the golden mean (Fig. 9) arise as the 
dimension of these randomly constructed Cantor sets? 

Problem 3. Computer Experiments and Random Homeomorphisms 

One topic Stan and I discussed several times was whether one could "randomize" 
dynamical systems in some way. Is it possible to define a probability measure on 
a wide class of dynamical systems such that meaningful statements could be made, 
for instance, about the probability that a system would become turbulent or about the 
expected time to the "onset of chaos"? To get started on this very ambitious problem, 
we discussed how we would go about generating homeomorphisms at random. For 
simplicity, let us generate homeomorphisms of the unit interval [0,1] onto itself. Thus, 
we wish to build continuous, strictly increasing maps h with h(0) = 0 and h(1) = 1. 
One algorithm for doing this randomly follows. 

Set h(0) = 0 and h(1) = 1. Choose h(1/2) according to the uniform distribution on 
[0,1]. Continue by choosing h(l/4) and h(3/4) according to the uniform distribution 
on [O, 1/21 and [1/2,1], respectively. In general, once the values of h(i/2") have 
been determined for i = 0,1,  . . . ,2", choose h ((2i + 1)/2'^+') according to the uniform 
distribution on [h(i/2"), h(i + 1)/2"]. This simple algorithm is easily implemented on 
a computer. (It needs no more than fifty lines of FORTRAN.) If the computer's random- 
number generator is fairly good, general properties of these functions can be guessed. 
However, to show that this algorithm defines an associated probability measure P on 
1̂, the set of all homeomorphisms of [0,1] onto [0,1], is no small task. First we need 

to define a class of elementary events and the probabilities associated with them. An 
elementary event in the sample space fi comes naturally from the random algorithm. 
For a positive integer n ,  consider the dyadic grid on [0,1] given by the points 1/2", 
2/2", . . . , (2" - 1)/2". Over each grid point i 12" construct a "gate", an interval (ai, bi) 
such that a, < bi < a;+l. An elementary event consists of all elements h of fi that pass 
through all the gates: ai < h(i/2") < bi9 for i = 1,2, . . . ,2" - 1 (Fig. 10). 

The probability assigned to an elementary event is defined by induction on n.  For 
example, if n = 1, an elementary event consists of all h that pass through a single 
gate: a < h(1/2) < b. Since the random algorithm chooses h(1/2) uniformly, the 
probability assigned to this event is the length of the interval, b - a .  If n > 1, the 
probability of an elementary event is determined from the conditional probabilities 
given by the algorithm. For example, the distribution function of the random variable 
h(3/4) is P (h(3/4) <: t ) .  To calculate this distribution function, we first find the 
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conditional probability that h (314) 5 t , given that h (1 12) = s.  It follows directly from 
the construction algorithm that 

if 1 s t  
P ( h ( 3 / 4 ) 5 t \ h ( l / 2 ) = s )  = - s ) / ( l - s )  i f s  < t  < 1 

if t < s .  

= t + (1 - t) ln(1 - t). 

The distribution of h(3/4) is shown in Fig. 11. 
The exact formulas for the probabilities assigned to various elementary events are 

quite complicated. What is required is to determine that probabilities of the form 

CONSTRUCTION OF 
ELEMENTARY EVENTS 

Fig. 10. In the study of random homeomor- 
phisms described in the text, an elementary 
event is defined as the set of all homeomor- 
phisms h that pass through 2" - 1 "gates" 
consisting of open intervals (ai, bi)  over the 
grid points i / 2 "  ( i  = 1 ,  2,  . .., 2" - 1). The 
ai9s and hi's are restricted by the conditions 
a; < bi < a;+,. Shown here is one possible 
set of gates for n = 2 and a member of the 
corresponding elementary event. 

satisfy Kolmogorov's consistency theorem. We have shown that these conditions are in- 
deed satisfied and therefore a probability measure P is defined on the homeomorphisms 
of [0,1]. To see what these homeomorphisms look like, we used the computer. Figure 
12 shows a few samples from our computer studies in which the values of h(i 12") are 
computed for n = 10. 

S. Graf, S. C. Williams, and I studied this method in detail (Graf, Mauldin, and DISTRIBUTION FUNCTION 
Williams 1986). For example, we examined a large number of the computer studies FOR h(3/4)  
and guessed that with probability 1 the derivative of a random homeomorphism at the 
origin is 0. This conjecture turned out to be correct. The argument is essentially the Fig. 11. As demonstrated in the text, F(t) z 

~(h (3 /4 )  < t) equals 0 for t < 0 and 
following. First, since h is increasing and h(0) = 0, it is enough to show that equals t + (1 - t) ln(1 - t )  for t > 0. Shown 

h(\/2") - h(o) 
lim = lim 2"h(1/2") = 0. 

n 112" n + o o  

Second, set 

here is the graph of that distribution func- 
tion. 

where n = 1 ,2 ,3 , .  . . . It is intuitively clear and can be proved that Â¥", &, Qs,. . . 
are independent random variables, all uniformly distributed on [O, 11. Set Xn = In Qn. 

The Xn  's are independent and identically distributed, and E (Xn ) = f' ~ l n  t dt = - 1. 
Therefore, by the strong law of large numbers, 
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COMPUTER-GENERATED 
RANDOM HOMEOMORPHISMS 

Fig. 12. Each of the graphs here is a random 
homeomorphism passing through a set of 
points /Ã̂( /21Â°) h(2/2I0), . . . , /~(1023/2~~). 
The sets of points were generated by a com- 
puter according to the algorithm described 
in the text. Such graphs provide experimen- 
tal data about the properties of the homeo- 
morphisms as a class. 
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Multiplying both sides by n we have, with probability 1, 

-oo= lim E X  - lirn z l n < ' ,  = lirn l n n f , .  
n- - t i - 0 0  n+m 

Exponentiating we get 

0 = lirn n X P p  = lim 2"A(1/2'), 
I I + ~  n+m 

p= l 

which is what we wanted to show. 
We have also shown that, with probability 1, a random homeomorphism has a 

derivative of 0 almost everywhere, that is, everywhere except for a subset of [0,1] with 
Lebesgue measure 0. Consequently, with probability 1, a random homeomorphism is 
not smooth. Therefore this approach will not yield answers to questions concerning the 
transition from smooth to turbulent, or chaotic, behavior. As often happened with Stan's 
problems, the original question, which was motivated by physics, would eventually 
become a purely mathematical problem. 

By the way, our original studies on an Apple computer illustrate the pitfalls of 
working with numerical results. From looking at the graphs we guessed that the set 
of fixed points for these homeomorphisms is a Cantor set. When we were unable to 
prove this conjecture, Tony Wamock conducted more highly resolved computer studies 
on a Cray. The results suggested not that the fixed points are a Cantor set but rather 
that a high proportion of the random homeomorphisms have an odd number of fixed 
points (see the accompanying table). This time we guessed that, with probability 1, a 
random homeomorphism has a finite odd number of fixed points. Indeed we were able 
to prove this; however, the proof is too complicated to outline here. 

A few closing comments on this problem. First, the procedure for generating a 
random homeomorphism can also be viewed as a procedure for generating a distribution 
function at random. Thus, we have a probability measure on the space of probability 
measures! This viewpoint was thought of and developed earlier by Dubins and Freed- 
man. Second, Stan and I did consider the generation of random homeomorphisms on 
other spaces. For example, the algorithm for generating homeomorphisms of the circle 
reads almost exactly like that for generating homeomorphisms of the interval. (How- 
ever, in that case we don't know whether there is a positive probability of generating 
homeomorphisms with no periodic points. This is an interesting possibility.) Third, 
it is possible to bootstrap oneself up from generating homeomorphisms of the interval 
to generating homeomorphisms of the square, the cube, and so on. These possibilities 
are described in Graf, Williams, and Mauldin 1986. Finally Stan had some wild ideas 
about "crossing" random homeomorphisms with something like Brownian motion to 
produce flows at random. 

That wildness was the joy of being with Stan Ulam. His boundless imagination 
opened up one's mind to the endless possibilities of creating. It was my good fortune 
to have known Stan for some ten years as a deep personal friend, a most stimulating 
collaborator, and an endless source of inspiration. rn 

FIXED POINTS OF RANDOM 
HOMEOMORPHISMS 

Listed here are computer-generated sets of 
data on the number of fixed points pos- 
sessed by each of (a) 5000 and (b) 10,000 
of the random homeomorphisms (h's) de- 
fined in the text. Note the predominance 
of homeomorphisms with odd numbers of 
fixed points. That observation led us to con- 
jecture, and to prove, that, with probability 
1, any such random homeomorphism has a 
finite odd number of fixed points. 

Number k of Number of h's 

Fixed Points with k Fixed Points 
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